Удивительные парадоксы

5. Существует бесконечно длинный «рог», которые имеет конечный объём, но бесконечную площадь поверхности.

Удивительные парадоксы


Двигаясь навстречу проблеме, появившейся в 17 веке, мы получаем один из многих парадоксов, связанных с геометрией и бесконечностью.

«Рог Гавриила» формируется путём взятия кривой y = 1/х и поворота вокруг горизонтальной оси, как показано на рисунке.

Удивительные парадоксы


Используя методы исчисления, которые позволяют вычислить площади и объёмы построенных таким образом фигур, можно видеть, что бесконечно длинный рог фактически имеет конечный объём, равный числу пи, но бесконечную площадь поверхности.


Иными словами, в рог поместится определённое количество краски, но для того, чтобы покрыть краской всю его поверхность, потребуется её бесконечное количество.

6. Гетерологическое слово – это слово, которое не описывает себя. А описывает ли себя слово «гетерологический»?

Удивительные парадоксы


Это один из многих парадоксов, который долго томил умы современных математиков и логиков.


Примером гетерологического слова может быть слово «глагол», которое не является глаголом по сути (в отличие от «существительного», которое является существительным). Другим примером может быть слово «длинный», которое не является длинным словом (в отличие от слова «короткий», которое является коротким словом).


Так «гетерологический» является гетеролигическим словом или нет? Если бы это было бы слово, которое не описывает себя, тогда оно бы описывало себя. А если бы оно было словом, которое описывает себя, оно бы не описывало себя.

Удивительные парадоксы


Это связано с парадоксом Рассела, который спрашивает, содержит ли определённое множество себя в качестве элемента. 

Читайте также: 10 необычных мысленных экспериментов

Создавая подобные самоуничтожающиеся множества, Бертран Рассел (Bertrand Russell) и другие учёные продемонстрировали важность установления тщательных правил при создании множеств, которые заложили основу математики 20 века.

Article By :